今天给各位分享区块链+sha的知识,其中也会对区块链商业模式,最重要的变化是进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
区块链技术中的哈希算法是什么?
1.1. 简介
计算机行业从业者对哈希这个词应该非常熟悉,哈希能够实现数据从一个维度向另一个维度的映射,通常使用哈希函数实现这种映射。通常业界使用y = hash(x)的方式进行表示,该哈希函数实现对x进行运算计算出一个哈希值y。
区块链中哈希函数特性:
函数参数为string类型;
固定大小输出;
计算高效;
collision-free 即冲突概率小:x != y = hash(x) != hash(y)
隐藏原始信息:例如区块链中各个节点之间对交易的验证只需要验证交易的信息熵,而不需要对原始信息进行比对,节点间不需要传输交易的原始数据只传输交易的哈希即可,常见算法有SHA系列和MD5等算法
1.2. 哈希的用法
哈希在区块链中用处广泛,其一我们称之为哈希指针(Hash Pointer)
哈希指针是指该变量的值是通过实际数据计算出来的且指向实际的数据所在位置,即其既可以表示实际数据内容又可以表示实际数据的存储位置。下图为Hash Pointer的示意图
HashPointer在区块链中主要有两处使用,第一个就是构建区块链数据结构。了解区块链的读者应该知道区块链数据结构由创世区块向后通过区块之间的指针进行连接,这个指针使用的就是图示的HashPointer.每个区块中都存储了前一个区块的HashPointer。这样的数据结构的好处在于后面区块可以查找前面所有区块中的信息且区块的HashPointer的计算包含了前面区块的信息从而一定程度上保证了区块链的不易篡改的特性。第二个用处在于构建Merkle Tree. Merkle Tree的各个节点使用HashPointer进行构建,关于区块链数据结构以及MerkleTree的内容我们在后续文章中进行进一步介绍。
哈希还在其他技术中有所应用例如:交易验证以及数字签名等等。
2.加密算法
2.1简述
加密简单而言就是通过一种算法手段将对原始信息进行转换,信息的接收者能够通过秘钥对密文进行解密从而得到原文的过程。按照加密方和解密方秘钥相同与否可以将加密算法大致分为三种子类型:
对称加密
对称加密的加密解密方使用相同的秘钥,这种方式的好处在于加解密的速度快但是秘钥的安全分发比较困难,常见对称加密算法有DES,AES,...
非对称加密
非对称加密体系也称为公钥体系,加解密时加密方拥有公钥和私钥,加密方可以将公钥发送给其他相关方,私钥严格自己保留。例如银行的颁发给个人用户的私钥就存储在个人的U盾里;非对称加密中可以通过私钥加密,他人能够使用公钥进行解密,反之亦然;非对称加密算法一般比较复杂执行时间相对对称加密较长;好处在于无秘钥分发问题。常见的其他非对称加密算法有RSA,ECC,区块链中主要使用ECC椭圆曲线算法。
对称加密与非对称加密的结合
这种方式将加密过程分为两个阶段,阶段一使用非对称加密进行秘钥的分发使得对方安全地得到对称加密的秘钥,阶段二使用对称加密对原文进行加解密。
2.2 数字签名
数字签名又称之为公钥数字签名,是一种类似于写在纸上的物理签名。数字签名主要用于数据更改的签名者身份识别以及抗抵赖。数字签名包含三个重要特性:
只有自己可以签署自己的数字签名,但是他人可以验证签名是否是你签发;
数字签名需要和具体的数字文档绑定,就好比现实中你的签名应该和纸质媒介绑定;
数字签名不可伪造;
依赖非对称加密机制可以较容易实现上述三种特性。
首先,需要生成个人的公私钥对:
(sk, pk) := generateKeys(keysize),sk私钥用户自己保留,pk公钥可以分发给其他人
其次,可以通过sk对一个具体的message进行签名:
sig := sign(sk, message) 这样就得到了具体的签名sig
最后,拥有该签名公钥的一方能够进行签名的验证:
isValid := verify(pk, message, sig)
在区块链体系中每一条数据交易都需要签名,在比特币的设计过程中直接将用户的公钥来表征用户的比特币地址。这样在用户发起转账等比特币交易时可以方便的进行用户交易的合法性验证。
2.3 数字证书和认证中心
2.3.1 数字证书(Digital Certificate)
数字证书又称“数字身份证”、“网络身份证”是经认证中心授权颁发并经认证中心数字签名的包含公开秘钥拥有者及公开秘钥相关信息的电子文件,可以用来判别数字证书拥有者身份。
数字证书包含:公钥、证书名称信息、签发机构对证书的数字签名以及匹配的私钥
证书可以存储在网络中的数据库中。用户可以利用网络彼此交换证书。当证书撤销后,签发此证书的CA仍保留此证书的副本,以备日后解 决可能引起的纠纷。
2.3.2 认证中心(Certificate Authority)
认证中心 一般简称CA, CA一般是一个公认可信的第三方机构,其作用主要是为每个用户颁发一个独一无二的包含名称和公钥的数字证书。
2.4 常见加密算法的对比
区块链的密码技术有
密码学技术是区块链技术的核心。区块链的密码技术有数字签名算法和哈希算法。
数字签名算法
数字签名算法是数字签名标准的一个子集,表示了只用作数字签名的一个特定的公钥算法。密钥运行在由SHA-1产生的消息哈希:为了验证一个签名,要重新计算消息的哈希,使用公钥解密签名然后比较结果。缩写为DSA。

数字签名是电子签名的特殊形式。到目前为止,至少已经有 20 多个国家通过法律 认可电子签名,其中包括欧盟和美国,我国的电子签名法于 2004 年 8 月 28 日第十届全 国人民代表大会常务委员会第十一次会议通过。数字签名在 ISO 7498-2 标准中定义为: “附加在数据单元上的一些数据,或是对数据单元所作的密码变换,这种数据和变换允许数据单元的接收者用以确认数据单元来源和数据单元的完整性,并保护数据,防止被人(例如接收者)进行伪造”。数字签名机制提供了一种鉴别方法,以解决伪造、抵赖、冒充和篡改等问题,利用数据加密技术、数据变换技术,使收发数据双方能够满足两个条件:接收方能够鉴别发送方所宣称的身份;发送方以后不能否认其发送过该数据这一 事实。
数字签名是密码学理论中的一个重要分支。它的提出是为了对电子文档进行签名,以 替代传统纸质文档上的手写签名,因此它必须具备 5 个特性。
(1)签名是可信的。
(2)签名是不可伪造的。
(3)签名是不可重用的。
(4)签名的文件是不可改变的。
(5)签名是不可抵赖的。
哈希(hash)算法
Hash,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,其中散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,但是不可逆向推导出输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
哈希(Hash)算法,它是一种单向密码体制,即它是一个从明文到密文的不可逆的映射,只有加密过程,没有解密过程。同时,哈希函数可以将任意长度的输入经过变化以后得到固定长度的输出。哈希函数的这种单向特征和输出数据长度固定的特征使得它可以生成消息或者数据。
以比特币区块链为代表,其中工作量证明和密钥编码过程中多次使用了二次哈希,如SHA(SHA256(k))或者RIPEMD160(SHA256(K)),这种方式带来的好处是增加了工作量或者在不清楚协议的情况下增加破解难度。
以比特币区块链为代表,主要使用的两个哈希函数分别是:
1.SHA-256,主要用于完成PoW(工作量证明)计算;
2.RIPEMD160,主要用于生成比特币地址。如下图1所示,为比特币从公钥生成地址的流程。
区块链最直白的解释
近几年,“区块链”一词成了大热门,新闻媒体竞相报道,但大家或许对于区块链的认知还停留在雾里看花的阶段,今天我们就来揭开它的神秘面纱。
其实区块链的本质特别简单,一句话就可以解释:去中心化分布式数据库。
区块链的主要作用是用于存储信息,任何人都可以将信息写入,同时也可以读取,所以它是一个公开的数据库。
区块链的特点
要说分布式数据库这种技术,市场上早有存在,可不同的是,区块链虽然同为分布式数据库,但它没有管理员,是彻底去中心化的。
去中心化是区块链技术的颠覆性特点,它无需中心化代理,实现了一种点对点的直接交互,使得高效率、大规模、无中心化代理的信息交互方式成为了现实。
但是,没有了管理员,人人都可以往里面写入数据,怎么才能保证数据是可信的呢?被坏人改了怎么办?设计者早已想到了这些,这也证明了区块链是真正划时代的产物。
区块
区块链由一个个区块(block)组成。区块很像数据库的记录,每次写入数据,就是创建一个区块。
每个区块包含两个部分:
区块头(Head):记录当前区块的特征值
区块体(Body):实际数据
区块头包含了当前区块的多项特征值。
生成时间
实际数据(即区块体)的哈希
上一个区块的哈希
...
系统中每一个节点都拥有最新的完整数据库拷贝,修改单个节点的数据库是无效的,因为系统会自动比较,认为最多次出现的相同数据记录为真。同时数据的每一步记录都会被留存在区块链上,可以溯源每一步的往来信息。
这里,你需要理解什么叫哈希(hash),这是理解区块链必需的。
所谓"哈希"就是计算机可以对任意内容,计算出一个长度相同的特征值。区块链的 哈希长度是256位,这就是说,不管原始内容是什么,最后都会计算出一个256位的二进制数字。而且可以保证,只要原始内容不同,对应的哈希一定是不同的。
举例来说,字符串123的哈希是a8fdc205a9f19cc1c7507a60c4f01b13d11d7fd0(十六进制),转成二进制就是256位,而且只有123能得到这个哈希。(理论上,其他字符串也有可能得到这个哈希,但是概率极低,可以近似认为不可能发生。)
因此,就有两个重要的推论。
推论1:每个区块的哈希都是不一样的,可以通过哈希标识区块。
推论2:如果区块的内容变了,它的哈希一定会改变。
哈希的不可修改性
区块与哈希是一一对应的,每个区块的哈希都是针对"区块头"(Head)计算的。也就是说,把区块头的各项特征值,按照顺序连接在一起,组成一个很长的字符串,再对这个字符串计算哈希。
Hash = SHA256( 区块头 )
上面就是区块哈希的计算公式,SHA256是区块链的哈希算法。注意,这个公式里面只包含区块头,不包含区块体,也就是说,哈希由区块头唯一决定。
前面说过,区块头包含很多内容,其中有当前区块体的哈希,还有上一个区块的哈希。这意味着,如果当前区块体的内容变了,或者上一个区块的哈希变了,一定会引起当前区块的哈希改变。
这一点对区块链有重大意义。如果有人修改了一个区块,该区块的哈希就变了。为了让后面的区块还能连到它(因为下一个区块包含上一个区块的哈希),该人必须依次修改后面所有的区块,否则被改掉的区块就脱离区块链了。由于后面要提到的原因,哈希的计算很耗时,短时间内修改多个区块几乎不可能发生,除非有人掌握了全网51%以上的计算能力。
正是通过这种联动机制,区块链保证了自身的可靠性,数据一旦写入,就无法被篡改。这就像历史一样,发生了就是发生了,从此再无法改变。
区块链+sha的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于区块链商业模式,最重要的变化是、区块链+sha的信息别忘了在本站进行查找喔。
标签: #区块链+sha
评论列表